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Abstract

We consider a linearly elastic composite medium with stress free strains, which consists of a homogeneous matrix
containing a homogeneous and statistically uniform random set of coated ellipsoidal inclusions having all the same
form, orientation and mechanical properties. We are using the main hypothesis of many micromechanical methods,

according to which each inclusion is located inside a homogeneous so-called e�ective ®eld. It is shown, in the
framework of the e�ective ®eld hypothesis, that from a solution of the pure elastic problem (with zero stress free
strains) for the composite the relations for e�ective thermal expansions, stored energy and average thermoelastic

strains inside the components can be found. This way one obtains the generalization of the classical formulae by
Rosen and Hashin (1970. Int. J. Eng. Sci. 8, 157±173), which are exact for two-component composites. The
proposed theory is applied to the example of composites reinforced with particles with thin inhomogeneous (along

inclusion surface) coatings. For a single coated inclusion the micromechanical approach is based on the Green
function technique as well as on the interfacial Hill operators. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: A. Microstructures; B. Inhomogeneous material; B. Elastic material; B. Thermal stress

1. Introduction

More detailed considerations of the mechanical behavior of composite materials require the analysis
of the interface between the reinforcement and the matrix. These interfaces may represent: weak
interfacial layer due to imperfect bonding between the two phases; inter-di�usion and/or chemical
interaction zones (with properties varying through the thickness and/or along the surface) at the
interface between the two phases. It is well known that the overall e�ective properties of composite
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materials are signi®cantly in¯uenced by the properties of the interfaces between the constituents. First,
the interface controls the in situ reinforcement's (particles or ®bers) strength and hence the strength of
the composite. Secondly, defects and damage are likely to occur at the interface (for example debonding,
sliding and interface cracks, etc.) and these interfacial defects control the degradation of the composite.
Therefore, to evaluate more accurately the e�ective properties of a composite, the behavior and
structures of interfaces must be taken into consideration (Qu, 1993; Cherkaoui et al., 1995). In our short
survey at ®rst we consider the problem of a single coated inclusion inside an in®nite matrix and then
di�erent homogenization schemes are discussed.

Classical works dealing with three-phase solids with spherical or cylindrical coated inclusions are
discussed, e.g. by Hashin (1962), Hashin and Rosen (1964). More general cases of mechanical loading,
including location dependent transformation were considered by Christensen and Lo (1979), Luo and
Weng (1987), (see references in Benveniste et al., 1989). Theocaris (1987) as well as Jasiuk and Kouider
(1993) analyzed the e�ect of the variation of elastic properties with the radial distance from the ®ber's
boundary in continuously reinforced ®ber composites. The above studies are restricted to isotropic
materials and spherical or cylindrical reinforcement shapes. Micata and Taya (1986) applied
Boussinesq±Sadowsky stress-functions when calculating the stress ®eld for two confocal prolate
spheroids embedded in an in®nite body.

The thin-layer hypothesis appeared as a principal step in the investigation of coated inclusions,
becasue it allows the use of the well-developed Eshelby (1961) theory and Hill (1983) interface operators
for the general case of anisotropy of the materials being in contact. In his pioneering paper in this
direction Walpole (1978) assumed that the stress and strain components inside the inclusion coincide
with those already determined before the coating was introduced. Afterwards this assumption was
replaced by the hypothesis of homogeneity of the stress state inside the core (inclusion) and
thermoelastic problems were considered (Hatta and Taya, 1987; Qiu and Weng, 1991; Chang and
Cheng, 1992; Cherkaoui et al., 1995). In most of the papers homogeneous thermo-elastic properties were
assumed for the coating. In the present work we relax these restrictive assumptions. The case of
inhomogeneity of elastic and mismatch properties in the coating is a typical situation due to the
production of the coated inclusions and due to thermal and plastic deformations of the matrix near the
inclusion. Even in situations in which for a speci®c reference system (connected to the unit normal and
tangential vectors of the surface of the inclusion) homogeneous stress and strain ®elds may be assumed,
the introduction of a global coordinate system requires the consideration of inhomogeneous ®elds in the
coating.

Another direction of research in the ®eld of coated inclusion mechanics is dealing with sliding
interfaces being intensively treated by Mura (1987), Hashin (1991), Jasiuk et al. (1988), Hashin (1991),
Dvorak and Benveniste (1992a), Qu (1992), Huang et al. (1993). The elastic ®eld of a single sliding
inclusion is solved by distributing Somiliana's dislocation on the interface where the interface shear
exceeds the stick limit and the contact condition changes from perfect bonding to perfect sliding with
non-continuous elastic ®elds. Furthermore, Hashin (1991) has shown that sliding along a two-
dimensional interface is equivalent to the response of some isotropical very thin ¯exible coating. Of
course, all these problems and a number of others can be solved by numerical methods which, however,
are not discussed in this paper.

The solution of the problem of a single coated inclusion in an in®nite matrix is used to treat
subsequently the analysis of composites with a random set of such inclusions. A considerable number of
methods is known in the linear theory of composites with homogeneous inclusions, which yield the
e�ective thermoelastic constants and stress ®eld averages in the components. A classi®cation of these
methods was proposed by Willis (1983). Many references are provided by the reviews of Willis (1982,
1983), Mura (1987), Kreher and Pompe (1989), Buryachenko and Parton (1992c), Nemat-Nasser and
Hori (1993). Nowadays, it appears that variants of the e�ective medium (KroÈ ner, 1961; Hill, 1965) and
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mean ®eld methods by Mori and Tanaka (1973) (see also Benveniste, 1987) are the most popular and
widely used methods. Despite the fact that these methods have certain drawbacks (discussed by Norris,
1989; Benveniste et al., 1991; Qiu and Weng, 1990; Buryachenko and Parton, 1990b), they provide
relatively simple analytical estimations. Recently a new method has become known by the open
literature, namely the multiparticle e�ective ®eld method (MEFM) was put forward and developed by
Buryachenko (1987), Buryachenko and Lipanov (1986a, b) (more references may be found in the survey
of Buryachenko and Parton, 1992c; Buryachenko and Kreher, 1995; Buryachenko, 1996). The MEFM is
based on the theory of functions of random variables and Green's functions. Within this method one
constructs a hierarchy of statistical moment equations for conditional averages of the stresses in the
inclusions. The hierarchy is then cut by introducing the notion of an e�ective ®eld. This way the
interaction of di�erent inclusions is taken into account. Thus, the MEFM does not make use of a
number of hypotheses which form the basis of the traditional one-particle methods. Buryachenko and
Parton (1990b, c) demonstrated that the MEFM includes as particular cases the well-known methods of
mechanics of strongly heterogeneous media (such as the e�ective medium and the mean ®eld methods).

A large number of papers exist with the applications of the above mentioned methods for the analysis
of composites with di�erent shapes, orientations and elastic properties of homogeneous ellipsoidal
inclusions. The solution of the problem of coated inclusions and the consideration of di�erent
constitutive relations (thermal ¯ow, thermo-elasticity, electro-magneto-elasticity and so on) have been
leading to an increase in the number of `generalized' and `modi®ed' versions of these classical methods.
However, it is a fundamental feature of the following general results, that all these indicated methods
(e�ective medium, mean ®eld method, MEFM and some others) are based on the same so-called
`e�ective ®eld hypothesis', according to which each inclusion has an ellipsoidal shape and is located in
some e�ective ®eld, which is homogeneous over the considered inclusion. In this paper for the case of
coated inclusions with the same shape, orientation and mechanical properties, it is shown that from a
solution of a purely elastic problem (with zero stress free strains) the relations for e�ective thermal
expansions, stored energy and average thermoelastic strains inside the components can be found. By this
means in the framework of the e�ective ®eld hypothesis one obtains the generalization of the classical
Rosen and Hashin's (1970) formula, which is exact for two-component composites. The proposed theory
is applied to composites reinforced with particles with thin, along inclusion surface inhomogeneous
coatings of the inclusions. For a single coated inclusion the micromechanical approach is based on the
Green's function technique as well as on the interfacial Hill operators.

2. Preliminaries

2.1. Basic equations

The paper discussed a certain representative mesodomain w with a characteristic function W
containing a set X � �vi � of inclusions vi with characteristic functions Vi(i = 1, 2, . . .). At ®rst no
restrictions are imposed on the elastic symmetry of the phases or on the geometry of the inclusions. The
inclusions are determined as the component v�1� having identical mechanical and geometrical properties.
The local strain tensor eee is related to the displacement u via the linearized strain±displacement equation

eee � 1

2

�
r 
 u� �r 
 u�T

�
: �2:1�

Here 
 denotes tensor product and (.)T denotes matrix transposition. The stress tensor sss, satis®es the
equilibrium equation (no body forces acting):
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rsss � 0: �2:2�
Stresses and strains are related to each other via the constitutive equation

sss�x� � L�x�eee�x� � aaa�x� or eee�x� �M�x�sss�x� � bbb�x�: �2:3�
L(x) and M�x� � L�x�ÿ1 are known phase sti�ness and compliance fourth-order tensors and the common
notation for tensor products has been employed: Le � �Lijkleeekl �, ssseee � �sssijeij �, aaa
 bbb � �aijbkl �: bbb�x� and
aaa�x� � ÿL�x�bbb�x� are second-order tensors of local eigenstrains and eigenstresses, respectively (frequently
called transformation ®elds) which may arise by thermal expansion, phase transformation, twinning and
other changes of shape or volume of the material. All tensors f �f �L, M, aaa, bbb� of material properties
are decomposed as, respectively, f � f �0� � f1�x�: f is assumed to be constant in the matrix v�0� � wnv�1�
and is an inhomogeneous function inside the inclusions, respectively,

f�x� �
(

f �0� for x 2 v�0�

f
�0� � f

�1�
1 �x� for x 2 vi � v�1�:

�2:4�

Particularly, for coated inclusions this means that f1
(1)(x) describes the change of properties between the

core and the coating of the inclusion vi: Here and in the following the upper index (k ) (k = 0, 1)
numbers the components and the lower index i numbers the individual inclusions; v�1� � [vi�i � 1, 2, . . .�:

We assume that the phases are perfectly bonded, so that the displacements and the traction
components of the stresses are continuous across the interphase boundaries. We take uniform traction
boundary conditions

sss0n�x� � T�x�, x 2 @w, �2:5�
where T(x) is the traction vector at the external boundary @w of the mesodomain w, n is its unit
outward normal and sss0, the mesoscopic stress tensor, is a given constant symmetric tensor.

2.2. Statistical description of the composite structure

It is assumed that the representative mesodomain w contains a statistically large number of inclusions
vi; all the random quantities under discussion are described by statistically homogeneous ergodic
random ®elds and thereby, the ensemble averaging could be replaced by volume averaging

h� � �i � �wÿ1
�
� � �W�x� dx, h� � �i�k� �

�
�v�k�
�ÿ1
� � �V �k��x� dx, �k � 0, 1�: �2:6�

The bar appearing above the region represents its measure, e.g. �v � mes v: V �k� is the characteristic
functions of v�k�: The average over an individual inclusion vi � v�1� �i � 1, 2, . . .�: h�.�ii�h�.�i�1�:

For the description of the random structure of a composite material let us introduce a conditional
probability density j�vmjxm, x1, . . ., xn�, which is a probability density to ®nd the m-th inclusion with the
center xm in the domain vm with ®xed inclusions v1, . . . , vn with the centers x1, . . ., xn: The notation
j�vmjxm; x1, . . ., xn� denotes the case xm 6� x1, . . ., xn: Of course, j�vmjxm; x1, . . ., xn�� 0 for values of xm

lying inside the `included volumes' [v0i�i � 1, . . . , n�, where v0i � vi with characteristic functions V0i

(since inclusions cannot overlap), and j�vmjxm; x1, . . ., xn� 4 j�vm� at jxi ÿ xmj41, i � 1, . . ., n
(since no long-range order is assumed). Since the coating is de®ned here as being a part of the inclusion,
no distinction between coated and uncoated inclusion is necessary. j�vm� is a number density n�1�

of the inclusions; c�k� is the concentration, i.e. volume fraction, of the component v�k�: c�k� � hV �k�i; c�1� �
�vmn
�1�, c�0� � 1ÿ c�1� �k � 0, 1; m � 1, 2, . . .�: Only if the pair distribution function g�xm ÿ xi � �
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j�vmjxm; xi �=n�1� depends on jxm ÿ xij it is called the radial distribution function. Below the notation
h�.��x�jv1, x1; . . . ; vm, xmi will be used for the conditional average taken for the ensemble of a statistically
homogeneous ergodic ®eld X � �vi �, on the condition that there are inclusions v1, . . . , vm at the points
x1, . . . , xm and x1 6� . . . 6� xm: The notation h�.��y�jv1, x1; . . . ; vm, xmi is used for the case y=2v1, . . . , vm:
The notation for the conditional probability density j�vpjxp; . . . ; x0� is considered under the condition
that the inclusions vp, . . . are located in the points xp, . . ., whereas the matrix position is denoted by x0:

2.3. Overall thermoelastic properties

We now summarize the principal formulae of thermostatics in a form which is appropriate to our
intended application to composites (see e.g. Laws, 1973; Kreher and Pompe, 1989; Dvorak and
Benveniste, 1992). For the estimation of e�ective properties the average values of strain and stress
concentration tensors are needed, i.e. no detailed distinction is required between coating and core of the
inclusions.

Let us decompose the overall ®eld as

sss�x� � sssI�x� � sssII�x�, eee�x� � eeeI�x� � eeeII�x�, �2:7�
with the sources

aaaI�x� � bbbI�x� � 0, TI�x� � T�x�, �2:8�

aaaII�x� � aaa�x�, bbbII�x� � bbb�x�, TII�x� � 0: �2:9�
The contribution to the local ®eld (2.3) from a purely mechanical load is

eeeI�x� � A��x�heeei, sssI�x� � B��x�hsssi, �2:10�
where A� and B� are fourth-order tensors; their phase volume averages, i.e. average over v�k� in a
representative volume A�k � hA�i�k� and B�k � hB�i�k� �k � 0, 1� are called the mechanical strain and stress
concentration tensors; it is necessary that hA�i � I, hB�i � I, where I is the unit fourth-order tensor.

The overall constitutive relations are written as

hsssi � L�heeei � aaa�, heeei � M�hsssi � bbb�: �2:11�
Then e�ective parameters M� � �L��ÿ1, bbb� �ÿM�aaa� are found from the solution of the elastic problem
(2.10)

M� � hMB�i, L� � hLA�i, �2:12�

aaa� � hA�Taaai, bbb� � hB�Tbbbi: �2:13�
According to the Hill condition (Hill, 1963), the uniform constraint condition (2.5) has the following

properties

hsssi � sss0, heeei � �wÿ1
�
1

2
�u
 n� n
 u� ds, �2:14�

heeesssi � heeeihsssi: �2:15�
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For simplicity the argument (x) will frequently be dropped. Eqn (2.14) means that the average stress hsssi
is precisely sss0 and that the average strain heeei can be `measured' in terms of the boundary displacements.
The Hill condition (2.15) holds for any compatible mean strain ®eld eee�x� (2.1) and equilibrium stress
®eld sss�x� (2.2) not necessarily related to each other by a speci®c stress±strain relation.

By using the Hill condition (2.15) we ®nd four scalar equations

heeeIsssIi � hsssiM�hsssi, heeeIIsssIi � bbb�hsssi, �2:16�

heeeIsssIIi � 0, heeeIIsssIIi � 0: �2:17�
According to (2.17) the average strain energy density of the loaded material is given by

U � � 1

2
hsssMsssi � 1

2
heeeIsssIi � 1

2
h
ÿ
eeeII ÿ bbb

�
sssIIi: �2:18�

Then the overall strain energy density U � is the sum of the strain energy density U �I due to the applied
load and U �II stored by the transformation stress ®eld,

U � � U �I �U �II, U �I � 1

2
hsssiM�hsssi, U �II � ÿ1

2
hbbbsssIIi: �2:19�

The stores energy U �II, like bbb�, depends only on the ®elds L(x) and bbb�x� and acts like e�ective material
constants, which can be observed macroscopically. bbb� � heeeIIi is the tensor of e�ective stress-free strains
and U �II can be determined experimentally by measuring the speci®c heats of the composite (see e.g.
Christensen, 1979; Buryachenko and Shermergor, 1995).

3. General integral equation and e�ective ®eld hypothesis

From Eqns (2.1)±(2.4) a general integral equation for eee can be derived. Substituting (2.1) and (2.3)
into the equilibrium equation (2.2), we obtain a di�erential equation with respect to the displacement u.
By rearranging the latter equation into an integral one and transforming it by a method developed
earlier (see e.g. Levin, 1976; KroÈ ner, 1977; Willis, 1982; Buryachenko and Kreher, 1995), we obtain

sss�x� � sss0 �
�
GGG�xÿ y�

�
M1�y� � bbb1�y� ÿ

�hM1sssi � hbbb1i
�	

dy, �3:1�

where

M1�y� �
(

0 for y 2 v�0�

M�1��y� ÿM�0� for y 2 vi � v�1�
, �3:2�

is the jump of the compliance M�1� (y) of the component v�1� with respect to the matrix v�0�,
M�k� � �L�k��ÿ1 �k � 0, 1�: By the function M(1) (y) the variation of the material properties within coated
inclusions is taken into account. The integral operator kernel

GGG�xÿ y� � ÿL�0�
h
Id�xÿ y� � rrG�xÿ y�L�0�

i
, �3:3�

is de®ned by the Green tensor G of the LameÂ equation of a homogeneous medium with an elastic
modulus tensor L�0�
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r
�

L�0�
1

2

�
r 
G�x� � �r 
G�x��T

��
� ÿdddddd�x�, �3:4�

d�x� is the Dirac delta function, ddd and I are the unit second-order and fourth-order tensors, respectively.
Let us consider some conditional statistical averages of the general integral equation (3.1) leading to

an in®nite system of integral equations (n = 1, 2, . . .)

hsss�x�jv1, x1; . . . ; vn, xni ÿ
Xn
i�1

�
GGG�xÿ y�hVi�y�

�
M1�y�sss�y� � bbb1�y�

�jv1, x1; . . . ; vn, xni dy

� sss0 �
�
GGG�xÿ y�

�hM1�y�sss�y� � bbb1�y�j; v1, x1; . . . ; vn, xni ÿ
�hM1sssi � hbbb1i

�	
dy, �3:5�

where x 2 v1, . . . , vn in the n-th line of the system (see Buryachenko and Kreher, 1995).
Now we de®ne the e�ective ®eld ~sss�x�1,..., n�x 2 v1, . . ., vn � as a stress ®eld in which the chosen ®xed

inclusions v1, . . . , vn are embedded. This e�ective ®eld is a random function of all the other positions of
the surrounding inhomogeneities and the average of ~sss�x�1,..., n over a random realization of these
inclusions is equal to the right-hand-side of the n-th line of the system (3.5)

h ~sss�x�1,..., ni � sss0 �
�
GGG�xÿ y�

�hM1�y�sss�y� � bbb1�y�j; v1, x1; . . . ; vn, xni ÿ
�hM1sssi � hbbb1i

�	
dy, �3:6�

where �x 2 vi, i � 1, 2, . . ., n�: Consequently, each inclusion vi�i � 1, . . . , n� of the chosen ®xed set is in a
random (generally speaking nonhomogeneous) ®eld

�sss�x� � ~sss�x�1,..., n�
X
j6�i

�
GGG�xÿ y�Vj�y�

�
M1�y�sss�y� � bbb1�y�

�
dy, �3:7�

�x 2 vi, j 6� i; i, j � 1, 2, . . ., n� which is the superposition of the e�ective ®eld ~sss�x�1,...n and the
distribution caused by the other inclusions of the considered set.

In order to simplify the exact system (3.5) we now apply the main hypothesis of many
micromechanical methods, the so-called e�ective ®eld hypothesis.

H1: Each inclusion vi has an ellipsoidal shape and is embedded in the ®eld ~sssi�x� which is
homogeneous over the inclusion vi: The perturbation introduced by the inclusion vi in the point y =2vi is
de®ned by the relation�

GGG�yÿ x�Vi�x�
�
M1 �x�sss�x� � bbb1�x�

�
dx � �viTi�yÿ xi �hM1�x�sss�x� � bbb1�x�i�i� �3:8�

where h���i�i � is an average over the volume of the inclusion vi (but not over the ensemble) and

Ti�yÿ xi � � � �vi �ÿ1
�
GGG�yÿ x�Vi�x� dx, y=2vi: �3:9�

In analogy to Buryachenko and Parton (1992c) and in view of linearity of the problem there exist
constant fourth- and second-rank tensors B and C, respectively, such that

hsss�x�ii � Bh Åsss�x�ii � C, x 2 vi,

�vihM1�x�sss�x� � bbb1�x�ii � Rh Åsss�x�ii � F, �3:10�
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where the tensors R and F are found by the use of the Eshelby theorem (Eshelby, 1961)

R � �viQ
ÿ1�Iÿ B�, F � ÿ �viQ

ÿ1C: �3:11�
The tensor Q is associated with the well-known Eshelby tensor S by

S � IÿM�0�Q, Q � ÿhGGG�xÿ y�ii � const �x, y 2 vi �: �3:12�

Of course, in practice the tensors B and C are found from the thermoelastic problem of a single
inclusion vi in the in®nite matrix, when c�1� � 0 and Åsssi�x� � sss0: This problem is connected with the
calculation of the inhomogeneous tensors B(x), C(x) by either analytical or numerical methods, such
that for x 2 vi the following holds:

sss�x� � B�x�sss0 � C�x�: �3:13�

B � hB�x�ii, C � hC�x�ii,

R � �vihM1�x�B�x�ii, F � �vihM1 �x�C�x� � bbb1�x�ii: �3:14�
In Section 5 we consider an analytical method for the calculation of the tensors B(x) and C(x) for
ellipsoidal inclusions with a thin coating. Other analytical methods for the analysis of coated ellipsoidal
inclusions are mentioned in the Introduction. In the general case the estimation of the tensors B(x), C(x)
is a particular problem of the transfomation ®eld analysis method by Dvorak and Benveniste (1992) and
is not discussed in more detail in this paper.

For the particular case of the homogeneous ellipsoidal domain vi (uncoated inclusions) with M1�x� �
M
�1�
1 � const, bbb1�x��bbb�1�1 � const, we have

B �
�

I�QM
�1�
1

�ÿ1
, C � ÿBQbbb�1�1 , �3:15�

R � �v1M
�1�
1

�
I�QM

�1�
1

�ÿ1
, F � �v1

�
I�M

�1�
1 Q

�ÿ1
bbb�1�1 : �3:16�

By comparison of relation (3.10) with (3.15) we see that the average thermoelastic response (i.e. the
tensors B, C, R, F) of any coated inclusion is the same as that of some ®ctitious ellipsoidal
homogeneous, i.e. uncoated, inclusion with thermoelastic parameters

M
f �1�
1 � Qÿ1�Bÿ1 ÿ I�, bbb f �1�

1 � ÿQBÿ1C, �3:17�
which also can be expressed in terms of the tensors R and F

M
f �1�
1 � R�I �vi ÿQR�ÿ1, bbb f �1�

1 � �vÿ1i

�
M

f �1�
1 Q� I

�
F: �3:18�

The parameters (3.17) and (3.18) of ®ctitious ellipsoidal inclusions are simply a notational convenience.
No restrictions are imposed on the microtopology of the coated inclusions as well as on the
inhomogeneity of the stress state in the coated inclusions.

In analogy to Willis (1982) we de®ne

ZZZ�x� � R Åsss�x� � F, ZZZ0 � Rsss0 � F �x 2 vi � �3:19�

V.A. Buryachenko, F.G. Rammerstorfer / International Journal of Solids and Structures 37 (2000) 3177±32003184



These quantities are called strain polarization tensors ZZZ�x� and ZZZ0:
Averaging (3.5) over the volume of the considered inclusion vi and using the hypothesis H1 (3.8) with

(3.19) leads to

hZZZ�x�jv1, x; . . . ; vn, xnii ÿ
Xn
j6�i

RTij�xi ÿ xj �hZZZ�y�jv1, x1; . . . ; vn, xnij

� ZZZ0 � R

�
�Tiq�xi ÿ xq�hZZZ�y�j; v1, x1; . . . ; vn, xniq

�jÿvq, xqj; v1, x1; . . . vn, xn

�ÿ Ti�xi ÿ xq�hZZZin�1�� dxq �3:20�

�n � 1, 2, . . . ; i, j � 1, . . ., n�, where the tensors

Tij�xÿ xj � �
ÿ
�vi �vj
�ÿ1� � GGG�xÿ y�Vi�x�Vj�y� dx dy, �3:21�

and the tensors Ti�yÿ xi � (3.9) have an analytical representation for spherical inclusions in an isotropic
matrix (see e.g. Buryachenko and Rammerstorfer, 1997), regardless of whether these inclusions are
coated or uncoated.

4. E�ective properties

4.1. Average stresses inside the components

The system (3.20) has principally the same structure as the system for the pure elastic problem (with
F � 0). Therefore, we can apply the traditional analysis procedure of purely elastic composites and
represent hZZZi�1� as a linear function of the external ®eld ZZZ0

hZZZi�1� � YZZZ0 �4:1�
and therefore,

Rh �sssi�1� � F � Y
ÿ
Rsss0 � F

�
: �4:2�

The comparison of (3.20) with (4.1) leads to the fact that Y only depends on the tensors R, Tij and Tj:
The tensor Y is determined by the purely elastic action (with F � 0� of the surrounding inclusions on the
separated one. For a dilute concentration of the inclusions, i.e. c�1� 4 0, we have Y 4 I: The actual
form of the tensor Y, used in the analysis as an approximation, depends on additional assumptions for
closing of the in®nite system (3.20). In particular, for purely elastic composites (with bbb1 � 0� with
®ctitious homogeneous inclusions (3.16) and (3.17) such relations are represented in Appendix A for
commonly applied methods of micromechanics, i.e. e�ective medium method by KroÈ ner (1961) and by
Hill (1965), Mori±Tanaka method, MEFM.

This means, taking into account eqns (3.10), (3.19) and (4.1), from the solution of the purely elastic
problem for the composite, we can calculate the average stresses inside the inclusions by

hsssi�1� � BRÿ1
�
Y
ÿ
Rsss0 � F

�
ÿ F

�
� C: �4:3�
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The mean matrix stresses follow simply from the condition hsssi � sss0 (2.14); and

hsssi�0� �
ÿ
c�0�

�ÿ1�
sss0 ÿ c�1��Iÿ B�ÿ1Cÿ c�1�BRÿ1Y�Rsss� F�

�
: �4:4�

The local stresses inside the inclusion, i.e. in the core and in the coating, respectively, are found by

hsssii�x� � C�x� � B�x�Rÿ1
�
Y
ÿ
Rsss0 � F

�
ÿ F

�
, �4:5�

where hsssii�x� means the average of the local stress state at x 2 vi � v1 over an ensemble realization of
surrounding inclusions (but not over the volume vi of a particular inclusion, in contrast to hsssi�1�).

Comparing (2.10) with (4.5) leads to the relation for the average local stress concentration tensor
inside the inclusions

hsssii�x� � hB�ii�x�sss0 �
�hB�ii�x� ÿ B�x��Rÿ1F� C�x�, �4:6�

where hB�ii�x� � B�x�D, �x 2 vi � and the tensor D � Rÿ1YR has the simple physical meaning of the
action [at bbb�x� � 0� of the surrounding inclusions on the separated one: h Åsssii�Dsss0:

Thus, the average of local thermal stresses hsssIIii�x� (2.7) over the ensemble is de®ned by the purely
elastic solution for the composite medium [the tensor hB�ii�x�� as well as by the thermoelastic solution
for a single inclusion in an in®nite matrix [the tensors B(x), C(x), R, F]. For two-component composites
with identical homogeneous inclusions of any shape Benveniste and Dvorak (1990) obtained an exact
relation for non-averaged local thermal stresses

sssII�x� � �B��x� ÿ I
�h

M
�1�
1

iÿ1
bbb�1�1 ,

from which one can derive eqn (4.6) in the case of ellipsoidal inclusions.
The matrix stresses in the immediate vicinity of the inclusions vi, denoted by sssÿi �n�, are given by the

formula (see Appendix B)

sssÿi �n� � sss�i �x� � GGG�n�
h
M
�1�
1 �x�sss�i �x� � bbb�1�1 �x�

i
, �4:7�

where sssÿi �n� and sss�i �x� are the limiting stresses outside and inside, respectively, near the inclusion
boundary @vi: sssÿi �n� � lim sss�y�; sss�i � lim sss�z�, y4x, z4x, y 2 v0, z 2 vi, x 2 @vi; n is the unit outward
normal vector on @vi: The relation (4.6) is correct for any shape of the inclusion vi: The tensor GGG�n�
depends only on the elastic properties of the matrix material M�0� and on the direction of the normal n;
the expression for GGG�n� is presented in Appendix B.

The eqns (4.5) and (4.6) allow the estimation of the ensemble average of the matrix stresses in the
vicinity of the inclusions near a point x 2 vi

hsssÿ�n�ix �
h
I� GGG�n�M�1�1 �x�

in
C�x� � B�x�Rÿ1

�
Y
ÿ
Rsss0 � F

�
ÿ F

�o
� GGG�n�bbb�1�1 �x�: �4:8�

4.2. Overall properties and correlations between them

For the estimation of the e�ective compliance we use the relations (2.12) and (4.5) to obtain

M� � M�0� � YRn�1�: �4:9�
Taking the equality bbb� �bbb�0� � hM1sssII�bbb1i (see e.g. Buryachenko and Lipanov, 1986a) into account we
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®nd the coe�cient of thermal expansion from the relations (3.10) and (4.2):

bbb� � bbb�0� � YFn�1�: �4:10�
Eqns (2.19) and (4.5) yield the following relation for the stored energy density:

U �II � ÿ1
2
hbbb1�x�B�x�iRÿ1�Yÿ I�Fÿ 1

2
hbbb1�x�C�x�i: �4:11�

Interestingly, all three e�ective quantities M�, bbb�, U �II can be estimated by the use of a unique scheme.
For example, for the estimation of the e�ective compliance M� as a ®rst step it is necessary to solve the
elastic problem for a single inclusion in an in®nite matrix (e.g. to ®nd the tensor B(x), see e.g. Section 5)
and in a second step, the single constant tensor Y is found from the purely elastic problem �bbb�x� � 0�
for the composite with ellipsoidal inclusions with the tensor R (3.14). Analogously the problem of
evaluating the e�ective tensors bbb�, U �II and the average stresses inside the components (4.4), (4.6) can be
fully solved if one of the two parameters, Y or M�, is found (for example experimentally). For a proof,
assume that M� is known. Then (4.9) yields

Y �
ÿ
M� ÿM�0�

�ÿ
Rn�1�

�ÿ1 �4:12�
and therefore,

bbb� � bbb�0� �
ÿ
M� ÿM�0�

�
Rÿ1F, �4:13�

U �II � ÿ1
2
hbbb1�x�B�x�iRÿ1

�
M� ÿM�0� ÿ Rn�1�

�ÿ
Rn�1�

�ÿ1
Fÿ 1

2
hbbb1�x�C�x�i: �4:14�

The eqn (4.13) can be rewritten in an alternative form:
Theorem. In the framework of the hypothesis H1, the ratio of the increment of the e�ective thermal

expansion to the increment of the e�ective sti�ness is a constant tensor de®ned by the averaging
solution for a single coated inclusion in an in®nite matrix (3.14) and does not depend on the concrete
statistically homogeneous microstructure of the while composite material and the detail microstructure
of the individual inclusions as well:ÿ

M� ÿM�0�
�ÿ1�

bbb� ÿ bbb�0�
�
� Rÿ1F: �4:15�

In particular, for homogeneous (i.e. noncoated) inclusions the constant tensors B, C, R and F
according to (3.15) and (3.16) are determined by the Eshelby tensor S and the jumps of the material
property tensors M

�1�
1 , bbb�1�1 : Then from (4.13) and (4.14) the classical results for two-phase composites are

derived

bbb� � bbb�0� �
ÿ
M� ÿM�0�

�ÿ
M�1� ÿM�0�

�ÿ1�
bbb�1� ÿ bbb�0�

�
, �4:16�

U �II � 1

2

�
bbb�0� ÿ bbb�1�

�ÿ
M�1� ÿM�0�

�ÿ1ÿ
bbb� ÿ hbbbi� �4:17�

(see Levin, 1967; Rosen and Hashin, 1970; Kreher, 1988; Kreher and Pompe, 1989; where more
references may be found). It is not surprising that the exact relations (4.16) and (4.17) are derived from
the approximate ones, i.e. (4.13) and (4.14), since the additional assumption H1 does not expand the

V.A. Buryachenko, F.G. Rammerstorfer / International Journal of Solids and Structures 37 (2000) 3177±3200 3187



class of the considered materials and homogenization methods. The representations (4.16) and (4.17) are
formally invariant with respect to the replacement v�1� $ v�0�, although this cannot be said about the
relations (4.13) and (4.14), obtained for matrix structure composites with ellipsoidal inclusions.

It should be mentioned that all results in Section 4 were obtained in the framework of hypothesis H1
only. No restrictions are imposed on the concrete form of the tensor Y (4.1), on the microtopology of
the coated inclusions or on the inhomogeneity of the stress state in the inclusions (4.5). Moreover, the
assumption of an ellipsoidal shape of the inclusion in the hypothesis H1, was used only in order to
obtain analytical solutions (3.10). This is because the tensor hGGG�xÿ y�ii (3.12) is apparently
homogeneous for x, y 2 vi for an ellipsoid. For non-ellipsoidal inclusions one could assume that in some
parts of the region vci � vi the properties M1�x� � 0, bbb1�x� � 0, i.e. it is su�cient to include a real non-
ellipsoidal inclusion vinvci into an ellipsoid (with smallest possible volume) and call it the inclusion vi
with a `coating' vci : The further scheme for calculating the tensors B, C (3.10) and overall properties is
the same, but the prescribed conditional distributions j�vmjxm; x1, . . ., xn�will have a larger correlation
hole [v0i �i � 1, . . . , n� than in the real composite material. This will result in an underestimation of the
computed values of M� for inclusions which are softer than the matrix and in an overestimation in the
opposite case.

It should be mentioned that we do not pursue the goal to present in Appendix A all known methods
based on hypothesis H1. There are, of course, several other methods which are based on hypothesis H1
and no ranking between them is given here. Our main objective is to prove the general relations (4.13)
and (4.14) which are valid in the framework of hypothesis H1 only. No restrictions are imposed on the
concrete statistically homogeneous microstructure of the whole composite material with a single sort of
coated inclusions being analyzed as well as on the microtopology of coated inclusions or on the
inhomogeneity of the stress state in the inclusions.

5. Single ellipsoidal inclusion with thin coating

5.1. General representation

In this section a possible application of the above general relations is presented. An analytical method
for estimating the tensors B(x) and C(x), see (3.13), is carried out for the example of a single ellipsoidal
inclusion with a thin coating in an in®nite matrix loaded by a constant macroscopic stress sss0:

Let the coated inclusion v1 consist of an ellipsoidal core vi � v1 with a characteristic function V i�x�
and thermoelastic parameters Mi, bbbi � const and a thin coating vc � v1nvi with a characteristic function
V c � V1 ÿ V i and thermoelastic inhomogeneous properties Mc�x�, bbbc�x� 6� const (see Fig. 1). In the
considered case of a single inclusion the origin of the coordinate system is chosen to be the center of the
inclusion xi � 0 and the coordinate axes coincide with the axes of the inclusions. In addition to (2.4) we
de®ne the jump of the material properties f �f�M, bbb� across the boundary si between the core and the
coating as f2�x� � f iÿ fc�x�:

For the single coated inclusion eqn (3.1) yields

sss�x� � sss0 �
�h

V i�y� � V c�y�
i
GGG�xÿ y��M1�y�sss�y� � bbb1�y�

�
dy: �5:1�

In analogy to Chang and Cheng (1992) as well as Cherkaoui et al. (1995) we ®nd an approximative
solution of eqn (5.1) under the approximative assumption of a homogeneous stress state in the core

sss�x� � sssi � const x 2 vi � v1 �5:2�
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and the thin-layer hypothesis, which means that the characteristic function V c�y� can be replaced by a
surface d-function (with weighting function r� at the outer surface siÿ of the boundary si � siÿ [ si� and
the volume integral of the continuous function g�y�, y 2 vc is equal to a surface integral over outer
surface siÿ (see e.g. Gel'fand and Shilov, 1964):�

V c�y�g�y� dy �
�
Si
ÿ�s�g�s�r ds, �5:3�

where the product of the characteristic function Si
ÿ of the boundary siÿ and some continuous function

g�s� � lim g�y�, �y4s, y 2 vc, s 2 siÿ � is integrated over the surface siÿ: In the particular case considered
hereafter, the weighting function r for a domain vc bounded by two ellipsoidal surfaces with the same
center and with identically oriented semi-axes aj and acj �j � 1, 2, 3�, respectively, is estimated by
Cherkaoui et al. (1995) by

r�y� �
 
y21
a41
� y22

a42
� y23

a43

!ÿ1=2X3
j�1

ÿ
acj ÿ aj

�
aj

y2j

a2j
,
�

y � �y1, y2, y3�T2 siÿ
�
: �5:4�

Under these assumptions the integral eqn (5.1) is, after averaging over the domain vi, reduced to

sssi � sss0 ÿQi
ÿ
Mi

1sss
i � bbbi1

�
�
�
Si
ÿ�s�Ti�xi ÿ s��Mc

1�s�sss�s� � bbbc1�s�
�
r ds: �5:5�

Here and in the following the upper index i for the tensors Qi, Bi, Ti�xiÿ s� stands for the calculation of
these tensors for the core vi by the use of the formulae (3.12), (3.15) and (3.9), respectively. Obviously,
discarding the integral term in (5.5) leads to the Eshelby solution.

Taking the properties of the interface operator GGG�n� (4.7) (see Appendix B) into account leads to

sssc�s� � sss�s� � sssi � GGG�n, Mc��Mi
2�s�sssi � bbbi2�s�

�
, �5:6�

Fig. 1. Single coated inclusion.
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�viTi �xi ÿ s� � GGG
ÿ
n, M�0�

�
ÿQi, �5:7�

GGG
ÿ
n, M�0�

�
Mc

1GGG�n, Mc � � GGG
ÿ
n, M�0�

�
ÿ GGG�n, Mc�, �5:8�

where n is a unit outward normal vector on @vi in the point s. Here both interface operators GGG�n, M�0��
and GGG�n, Mc� are de®ned by formula (B.12) (see Appendix B) applied with the compliances M�0� and Mc,
respectively; Mi

2�s� � MiÿMc�s�, bbbi2�s� � bbbiÿbbbc�s�:
Now eqn (5.5) reduces to an equation with only one unknown constant tensor sssi

sssi � sss0 �
�

�vc

�vi
Qi ÿQ1

�ÿ
Mi

1sss
i � bbbi1

�
ÿ 1

�vi
Qi

�
Si
ÿ�s�

�
Mc

1�s�sssi � bbbc1�s�
�
r ds

ÿ 1

�vi

�
Si
ÿ�s�

�
I�QiMc

1�s�
�h

I� GGG
ÿ
n, M�0�

�
Mc

1�s�
iÿ1

GGG
ÿ
n, M�0�

��
Mi

2�s�sssi � bbbi2�s�
�
r ds: �5:9�

The tensor Q1 for the ellipsoidal inclusion v1 is determined by the relation (3.12).
This way we obtain an estimation of the stress distribution inside the coated inclusion sssi and sssc�s�,

see (5.6) and (5.9). Therefore, the stress concentration tensors B(x), C(x) in eqn (3.13) are found to be
B(x), C(x) = const at x 2 vi and B(x), C(x)$const at x 2 vc: After that the tensors R and F are de®ned
by eqn (3.14) and the thermoelastic properties of the ®ctitious homogeneous inclusions M

f �i �
1 and bbb f �i �

1 ,
are evaluated by the relations either (3.17) or (3.18). Hence, the thermoelastic problem for the single
coated inclusion is completely solved and we can come to the estimation of the overall thermoelastic
properties, M�, bbb�, U�II, see (4.9)±(4.11) and average stresses hsssi�0� (4.4), hsssi1�x� (4.5), hsssÿ�n�ix (4.8)
inside the components by the use of di�erent tensors Y (for some particular methods such tensors are
represented in Appendix A).

Let us consider a simpli®cation of the solution (5.9) for di�erent particular cases of coated inclusions.
According to (5.3) and (B.13) for a homogeneous coating, i.e. Mc�x� and bbbc�x� are constant for any
x 2 vc, we get from (5.9) and (5.6)

sssi � sss0 ÿQ1

�
Mi

1sss
i � bbbi1

�ÿ �vc

�vi
�
QiMc

1Q
i�Mc� �Qi�Mc� ÿQi

	�
Mi

2sss
i � bbbi2

�

�ÿI�QiMc
1

��
Q1�Mc� ÿQi�Mc���Mi

2sss
i � bbbi2

�
, �5:10�

hssscic � sssi �
�

Qi�Mc � � �vc

�vi

�
Q1�Mc � ÿQi�Mc����Mi

2sss
i � bbbi2

�
: �5:11�

Here the tensors Q and Q�Mc� (with the indices i and 1) are calculated for the compliances M(0) and Mc,
respectively; h�.�ic denotes average over vc: In the particular case of homothetic surfaces @vi and @vc

(when Qi � Q1� the eqns (5.10) and (5.11) can be further simpli®ed to become

sssi � sss0 ÿQi
�
Mi

1sss
i � bbbi1

�ÿ �vc

�vi
�
QiMc

1Q
i�Mc � �Qi�Mc� ÿQi

��
Mi

2sss
i � bbbi2

�
, �5:12�

hssscic � sssi �Qi�Mc ��Mi
2sss

i � bbbi2
�
: �5:13�
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The relations (5.10)±(5.13) have been proposed previously by a more speci®c method by Cherkaoui et al.
(1995) (see also Buryachenko and Rammerstorfer, 1996, 1999).

Clearly, the thin-layer hypothesis can be rejected if the elastic properties of the coating and the matrix
are the same: Mc�x� � M�0�, x 2 vc: Then under assumption (5.2) the eqn (5.1) can be solved immediately
leading to

sssi � Bi

�
sss0 ÿQibbbi1 �

�
V c�y�Ti

ÿ
xi ÿ y

�
bbbc1�y� dy

�
, Bi � ÿI�QiMi

1

�ÿ1
, �5:14�

hssscic � sss0 � �vi

�vc
ÿ
Qi ÿQ1

��
Mi

1sss
i � bbbi1

�ÿQ1hbbbc1ic ÿ
�vi

�vc

�
V c�y�Ti

ÿ
xi ÿ y

�
bbbc1�y� dy: �5:15�

For a thin coating we obtain from (5.9) and (5.6)

sssi � Bi

�
sss0 ÿQibbbi1 ÿ

�vc

�vi
Qihbbbc1ic �

1

�vi

�
Si
ÿ�s�GGG

ÿ
n, M�0�

�
bbbc1�s�r ds

�
, �5:16�

hssscic � sss0 � �vi

�vc
ÿ
Qi ÿQ1

��
Mi

1sss
i � bbbi1

�ÿ �vc

�vi
Qihbbbc1ic �

�
1

�vi
ÿ 1

�vc

��
Si
ÿ�s�GGG

ÿ
n, M�0�

�
bbbc1�s�r ds: �5:17�

These relations result from (5.14) and (5.15) under the assumption of the thin-layer hypothesis (5.3).

5.2. Numerical assessment of thin-layer hypothesis

Let us consider a single spherical inclusion of the radius ai with a homothetic spherical coating of the
radius ac with Qi � Q1 and according to (5.4), r � ac ÿ ai in an in®nite matrix. The elastic properties of
the coating coincide with the elastic properties of the isotropic matrix, i.e.

Lc � L�0� �
ÿ
3k�0�, 2m�0�

�
� 3k�0�N1 � 2m�0�N2, N1 � ddd
 ddd=3, N2 � Iÿ N1: �5:18�

Let bbbi � bbb�0� � 0 and bbbc has a special form with some physical meaning represented by

bbbc � gddd� �wÿ g�n
 n, �5:19�
where n is the unit outward normal vector on @vi:
It can easily be shown that g and w are the transformation parameters of the coating in the tangential

and normal directions, respectively. If g � w this constitutive characterization of the coating corresponds
to the particular case of an isotropical thermal expansion, considered by a number of authors (see e.g.
Hatta and Taya, 1987; Chang and Cheng, 1992). We will analyze a less trivial case g 6� w allowing the
existence of a prestress in the coating. This situation is typical for the case of production of coated
inclusions separately from the matrix. Moreover, under purely thermal deformations (e.g. sss0 � 0� the
plastic strains of the matrix near the inclusions also have the form (5.19) (see e.g. Buryachenko et al.,
1997). Clearly, in some local coordinate system connected with the inclusion surface @vi the tensor bbbc is
constant. However, in the global coordinate system bbbc is a function of the unit normal n and therefore,
is an inhomogeneous function of the coordinates. Therefore, the system (5.10) and (5.11), obtained
under the assumption of a homogeneous coating, is not suitable and it is necessary to consider the
system for either a thin coating, i.e. (5.16) and (5.17), or a thick one, i.e. (5.14) and (5.15). In the more
general case of a thick coating we have
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sssi � Bi

�
sss0 � �wÿ g�

�
V c�y�Ti

ÿ
xi ÿ y

�
�n
 n� dy

�
, �5:20�

hssscic � sss0 ÿ 1

3
�w� 2g�Qidddÿ �vi

�vc
�wÿ g�

�
V c�y�Ti

ÿ
xi ÿ y

�
�n
 n� dy: �5:21�

According to (3.14) we can now ®nd the concentration tensors

B � I� �vi

�v1
�Bi ÿ I�, �5:22�

C � ÿ1
3

�vc

�v1
�w� 2g�Qiddd� �vi

�v1
�wÿ g��Bi ÿ I�

�
V c�y�Ti

ÿ
xi ÿ y

�
�n
 n� dy: �5:23�

Clearly, the tensor C (5.23) is an isotropic one: C � Cddd, as well as C�x� � C iddd, x 2 vi and

C�x� � C iddd � �wÿ g�Bi

�
V c�y�Ti

ÿ
xi ÿ y

�
�n
 n� dy, at x 2 vi: �5:24�

In order to show the good quality of the estimation resulting from the thin-layer hypothesis let us de®ne
a normalized residual average stress �s0 � 0� in the coated inclusion sres � ÿhs11i�1�=�g3Qk�1ÿ Bik��, with
isotropic tensors Qi�Q1��3Qk, 2Qm�, Bi��3Bik, 2Bim�: Average residual stress in the coating inclusion
hsssi�1� can be found by the use of eqn (4.3) with Y = I (when hsssi�1� � C). We consider now the
particular case of rigid spherical inclusions inside the coating with pure tension prestress �w � 0� and
v�0� � 0:3: Using the thin-layer hypothesis (5.3) from (5.23) the normalized residual stress is determined
to become sres � �vc= �v1 which does not depend on the elastic properties of the matrix. In Fig. 2 the
parameter sres is represented as a function of relative thickness of the coating h � �ac ÿ ai �=ai: Results
obtained by using the thin-layer hypothesis (5.3) are compared with results (5.23) without this
approximative assumption. As becomes evident from Fig. 2 the thin-layer hypothesis provides an

Fig. 2. Variation of the normalized average residual stress in the coated inclusion, sssres, as a function of the relative coating thick-

ness h � �ac ÿ ai �=ai: Dotted line: under assumption of thin-layer hypothesis; solid line: without this assumption.

V.A. Buryachenko, F.G. Rammerstorfer / International Journal of Solids and Structures 37 (2000) 3177±32003192



acceptable exactness for not too thick coating, let us say for h <0.2. For increasing Poisson ratios of
the matrix v�0�, the solid line approaches the dashed line and for v�0� � 0:5 both curves coincide.

Now the normalized residual stress in the core sres
i � hs11ii=�3BikQkg� is estimated, where the average

over the core vi is considered: h�.�ii: Analytically derived results (5.24) under thin-layer hypothesis (5.3)
(for which vc=vi � 3h� are compared in Fig. 3 with the one obtained by more exact approach eqn (5.24)
and with results from the ®nite element analyses. The numerical results obtained from ®nite element
analyses (presented in the paper by Buryachenko and Rammerstorfer, 1996) di�ers from the analytical
solution (5.24) by not more than 1%. Increase of the Poisson ratio of the matrix, v�0�, would move the
solid and dashed lines in Fig. 3 slightly but not signi®cantly; clearly, the thin-layer approximation sres

i �
3h does not change. In conclusion, the analytical solution (5.23) and (5.24) provides high exactness in
the considered examples.

6. Discussion

Let us discuss the main hypotheses as well as the limitations of the proposed estimations and their
possible generalizations.

The assumption of homogeneity of �ZZZ�x�, �x 2 vi � is a classical hypothesis of micromechanics (see the
earliest references by Lax, 1951) and was required in order to make it easier to solve the algebraic
system (3.20) and (A.4) (see Appendix A), which, in principle, can also be solved for a polynomial
function �sssi�x�, ~sss�x�1,..., n in analogy to Moschovidis and Mura (1975) or Chen and Acrivos (1978). Then
in the case of the rejection of the hypothesis H1 it is necessary to introduce new concentration tensors
of larger dimension in addition to B, C, F, R (3.10) and (3.11), which signi®cantly complicates the
calculations and reduces the generality of the obtained formulae (4.9)±(4.11).

However, it should be noted that for rigid spherical inclusions in an incompressible matrix the
solution by Chen and Acrivos (1978) m�=m�0� � 1� 2:5c� 5:01c2 is very close to that obtained with the
dilute approximation by MEFM (Buryachenko and Lipanov, 1986) m�=m�0� � 1� 2:5c� 4:85c2 (see also
Buryachenko, 1996). Furthermore, Buryachenko and Parton (1992b) as well as Buryachenko (1999a)

Fig. 3. Normalized residual stress in the core, sres
i , calculated analytically by the use of the thin-layer hypothesis (5.7) (with

vc=vi � 3h, dotted line) and without this approximative assumption (dashed line). Numerical evaluation by the ®nite element

method (solid line).
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estimated the exactness of the MEFM by comparing their solution L��c� with the exact analytical
solution by Sangani and Lu (1987) for simple cubic packing of either rigid or vacuole spherical
inclusions. For simple cubic packing the maximum inclusion concentration equals 0.52. However, even
for c = 0.50 the error of the MEFM results does not exceed 15%. Therefore, the exactness of the
hypothesis H1 should be considered as su�cient for practical purposes.

The principal limitation of this paper is due to the assumption of statistical homogeneity of the
composite microstructure, although Buryachenko and Parton (1990a), Buryachenko (1998, 1999b) and
Buryachenko and Rammerstorfer (1998a) analyzed the case of statistically inhomogeneous composites,
i.e. when the inclusion concentration is a function of the coordinates i.e. j�vi � � j�vi ��x� (such materials
have been denoted as some sorts of graded materials). In this case the general equation (3.19) is valid if
the average obtained from (2.6) is understood as the ensemble average in the considered point x. Even
under the hypothesis H1 and some additional simpli®cations Buryachenko (1998), as well as
Buryachenko and Rammerstorfer (1998a) obtained the dependence of M� on the inclusion concentration
j�vi ��x� and (what is less trivial) the nonlocal character of such a dependence. Then even for constant
external loading sss0 the e�ective ®eld hZZZi�x� is a function of the coordinates and the ensemble average
stress (4.3)±(4.5) will be represented in the form of either integral or di�erential operators (Buryachenko,
1998; Buryachenko and Rammerstorfer, 1998a; see also Buryachenko, 1999b).

The possible constitutive relations are not limited to the case of thermo-elasticity (2.3). It is only
important that the response of an inclusion is de®ned by the eqns (3.10), notwithstanding the inclusion
can be considered as some sort of a `black box'. Hence, the response of materials with gas-saturated
pores or cracks has the same form (3.8) and (3.9) and we can obtain estimations for the overall
properties immediately (as opposed to Buryachenko and Lipanov, 1986) from the solution of the purely
elastic problem. Further the constitutive relation of thermo-electro-magneto-elasticity has the form (2.3),
however with larger dimension. Such analogy is valid for both the general equation (3.20) and for a
single inclusion (3.8) and (3.9) and was used by Buryachenko and Parton (1992b), Buryachenko and
Shermergor (1995) for obtaining overall property estimations and some exact relations for composites
with homogeneous inclusions generalizing the elastic results by Rosen and Hashin (1970), Kreher and
Pompe (1989), Buryachenko and Kreher (1995). In the light of the results obtained in this paper,
obviously, consideration of coated inclusions with thermo-electromagneto-elastic components are
possible too.
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Appendix A. The evaluation of the Y (4.1)

E�ective medium method

The additional closing hypothesis of the e�ective medium method is described as follows: each
inclusion in the composite behaves as an isolated one in a homogeneous medium whose properties

V.A. Buryachenko, F.G. Rammerstorfer / International Journal of Solids and Structures 37 (2000) 3177±32003194



coincide with the e�ective properties. Formally this means

H2: Y � I, M� �M�0� � R�M��n�1�, �A:1�
where the tensor R(M�) is calculated by the use of the formulae (3.11) with M(0) being replaced by M�;
this exchange applies to the formulae (4.3)±(4.11), too.

The so-called di�erential scheme of constructing e�ective elastic moduli also belongs to the class of
the e�ective medium methods (see e.g. Norris et al., 1985). This scheme is considered as a process of
consecutive additions of in®nitesimal values of the inclusion phase in a uniform medium with a modulus
equal to the e�ective modulus of the medium with the previous additions of inclusions to the matrix,
which yields the closed-form equation

H2: Y � I,
dM�

dc�1�
� 1

�1ÿ c�1� � �v1
R�M��: �A:2�

Mori±Tanaka method

According to the closing hypothesis of the Mori±Tanaka method each inclusion in the composite is
considered as an isolated one, located inside an in®nite matrix and loaded by the e�ective ®eld h �sssii �
hsssi0: Then from the equation c�1�Bhsssi�1��c�0�hsssi�0� �sss0 we obtain

H2: Yÿ1 � I� �Bÿ I�c�1�: �A:3�

Multiparticle e�ective ®eld method

By using hypothesis H1, the system (3.20) with ®xed values h �sss�x�1,..., ni for x 2 vi on the right-hand-
side of the equations becomes algebraic when the solution (3.10) for one inclusion in the ®eld
h �sss�x�ii �i � 1, . . ., n� is applied:

h �sss�x�ii � h ~sss�x�1,..., nii �
Xn
j�1

ÿ
1ÿ dij

�
Tij

ÿ
Rh �sss�y�ij � F

�
, �A:4�

where dij is a Kronecker symbol. Let us de®ne a matrix Zÿ1 with elements �Zÿ1�ij�i, j � 1, . . ., n� (the
elements represent the fourth-order tensors)

�Zÿ1�ij� Idddij ÿ
ÿ
1ÿ dddij

�
RTij�xi ÿ xj �: �A:5�

Then the system (A.4) can be rewritten as follows

Rh �sssii � F �
Xn
j�1

Zij

�
Rh �sss�x�1,..., nij � F

�
: �A:6�

The system (3.20) can be solved by analytical methods, if the hypothesis

H2: h ~sss�x�1, 2ii � h �sss�x�ii � const �i � 1, 2� �A:7�

is assumed. This independence of h ~sss�x�1,2i on the spacing between the inclusions v1 and v2 occurs for the
large distance between the inclusions. Then from (3.20), taking (3.10), (A.6) into account, we get
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h �sssii �
�

Tiq�xi ÿ xq�Zqij
ÿ
vq, xqj; vi, xi

�
dxq�Rh �sssi � F�

�
�h

Tiq�xi ÿ xq�Zqqj
ÿ
vq, xqj; vi; xi

�ÿ Ti�xi ÿ xq�n�1�
i
� ÿRh �sssiq � F

�
dxq, �A:8�

where the matrix elements Zqi, Zqq are nondiagonal elements and diagonal ones of the binary interaction
matrix Z (A.5) for the two inclusions vq and vi: This set of equations can be solved for h �sssii:

Rh �sssii � F � Y�Rhsssi � F�, �A:9�
where the matrix Y determines the action of the surrounding inclusions on the considered one and has
an inverse matrix Yÿ1 given by

Yÿ1 � I ÿ R

�
Tiq�xi ÿ xq�Zqij

ÿ
vq, xqj; vi, xi

�
dxq

ÿR

�h
Tiq�xi ÿ xq�Zqqj

ÿ
vq, xqj; vi, xi

�ÿ Ti�xi ÿ xq �n�1�
i

dxq: �A:10�

Buryachenko and Parton (1992a) proposed a di�erential version of the MEFM, in which at each step of
the di�erential scheme (A.2) a problem of n interacting inclusions inside some e�ective medium is
solved.

The `quasi-crystalline' approximation by Lax (1951) (see also Kunin, 1983) expressed as

H2: Zij � Idij, �A:11�
leads to the one particle approximation of MEFM by Buryachenko and Parton (1992)

Yÿ1 � Iÿ R

�h
Tiq�xi ÿ xq�j

ÿ
vq, xqj; vi, xi

�ÿ Ti�xi ÿ xq�n�1�
i

dxq: �A:12�

Under a point approximation of the inclusions (exact for in®nitely spaced heterogeneities) we have

Tiq�xi ÿ xq � � Ti�xi ÿ xq� � GGG�xi ÿ xq�, �A:13�

and from (A.12) one receives

Yÿ1 � Iÿ R

�
GGG�xi ÿ xq�

h
j
ÿ
vq, xqj; vi, xi

�ÿ n�1�
i

dxq: �A:14�

The representation (A.14) follows from the results obtained by Levin (1976) and by the use of the
variational method by Willis (1977), Ponte CastanÄ eda and Willis (1995) (see also Buryachenko and
Rammerstorfer, 1998b), who considered in detail the case of multicomponent composites and the e�ect
of the spatial distribution of the homogeneous inclusions. Only in particular cases, in which the shape of
the correlation hole v0i is homothetic to the inclusion shape vi the formulae (A.3) and (A.14) coincide.

Appendix B. Properties of the interface operator GGG (n) (4.7)

According to Hill (1983) we de®ne the projective operators ttt, v and E, F of the second- and fourth-
order, respectively, as follows:

V.A. Buryachenko, F.G. Rammerstorfer / International Journal of Solids and Structures 37 (2000) 3177±32003196



tkl � nknl, vkl � dkl ÿ tkl,

Fklmn � �vkmvln � vlmvkn �=2, Eklmn � Iklmn ÿ Fklmn: �B:1�
Furthermore, the surface tensors are de®ned by

L�n�2� L2ttt, G�n�2�
�
L�n�2

�ÿ1
, GGG�n�2� L2 ÿ L2U�n�2L2,

U�n�2klmn�
�
nkG�n�2lmnn

�
�kl��mn�: �B:2�

Here and below the symbols + and ÿ relate to the di�erent boundary sides.
By testing we immediately obtain `orthogonal' properties of the operators de®ned in (B.1)

tttttt � ttt, vv � v, vttt � 0,

FF � F, EE � E, Ev � 0, Fttt � 0, FE � 0: �B:3�
Hence the tensors U(n), GGG (n) in (B.2) can be expressed in terms of the projective operators (B.1)

U�n� � �ELE�ÿ1E, GGG�n� � �FMF�ÿ1F: �B:4�
Perfect contact between two materials means

Esss� � Esssÿ, �B:5�

Feee� � Feeeÿ: �B:6�
The following relations between the stress tensors near the interface are involved (see e.g. Buryachenko
and Kreher, 1995):

sssÿ � sss� � GGG�n�ÿ
��M� ÿMÿ�sss� �

ÿ
bbb� ÿ bbbÿ

��
�B:7�

sss� � sssÿ � GGG�n��
��Mÿ ÿM��sssÿ �

ÿ
bbbÿ ÿ bbb�

��
: �B:8�

Substitution of (B.7) into the right-hand-side of (B.8) leads to

GGG�n�ÿÿGGG�n��� GGG�n�ÿ�M� ÿMÿ�GGG�n��: �B:9�
Let an ellipsoidal inclusion vi with the homogeneous compliance M+ be located in an in®nite
homogeneous matrix with compliance Mÿ and loaded by the homogeneous stress sss0: Then, according to
Eshelby's theorem (with bbb � 0), we have

sss� � sss0 ÿQi�M� ÿMÿ�sss�, �B:10�

sssÿ � sss0 � �viTi�xi ÿ xÿ��M� ÿMÿ�sss�, �B:11�
where the tensor Qi of the inclusion vi is associated with the Eshelby tensor Si (3.12) by Si � IÿMÿQi

and the tensor Ti�xi ÿ xÿ� is de®ned by the relation (3.9) for the point xÿ=2vi near the ellipsoidal surface
@vi: Substituting the relations (B.7) and (B.11) into eqn (B.10) we obtain
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�viTi�xi ÿ xÿ� � GGG�n�ÿÿQi: �B:12�
Let us consider a coated inclusion v1 � vi [ vc with a characteristic function V1 � V i � V c: According to
(3.9) the tensor GGG�n�ÿ in (B.12) is integrated over the coating vc�

V c�y�GGG�n�ÿdy � �vcQi �
�h

V1�y� ÿ V i�y�
i �

V i�x�GGG�xÿ y� dx dy: �B:13�

Changing the integration sequence and applying Eshelby's theorem, we get from (B.13)�
V c�y�GGG�n�ÿdy � �vcQi � �vi

ÿ
Qi ÿQ1

�
: �B:14�

In particular for an isotropic medium with the elastic moduli

L � �3k, 2m� � 3kN1 � 2mN2, N1 � ddd
 ddd=3, N2 � Iÿ N1, �B:15�
the inversion of the matrix L(n) may be simpli®ed and we obtain

L�n�kl� mdkl �
�
k� m

3

�
nknl, G�n�kl� mÿ1

�
dkl ÿ 2k� m

3k� 4m
nknl

�
,

U�n�klmn�
1

2m

�
Eklmn ÿ 3kÿ 2m

3k� 4m
nknlnmnn

�
,

GGG�n�klmn� 2m
�
Fklmn � 3kÿ 2m

3kÿ�4m �dkl ÿ nknl ��dmn ÿ nmnn�
�
: �B:16�
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